Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jun Wu, ${ }^{\text {a }}$ * Pei-Zhi Zhang, ${ }^{\text {b }}$
Qing-Sen $\mathrm{Yu}{ }^{\text {a }}{ }^{\text {Z }}$ Xiu-Rong Hu^{c} and Jian-Min Gu ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China, ${ }^{\text {b }}$ Department of Biological and
Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310012, People's Republic of China, and ${ }^{\mathrm{c}}$ Central Laboratory, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China

Correspondence e-mail: wujunwjwj@sohu.com

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.048$
$w R$ factor $=0.130$
Data-to-parameter ratio $=11.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

N-(2-Bromophenyl)-2-(4,6-dimethoxy-pyrimidin-2-yloxy)benzylamine

The title compound, $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{BrN}_{3} \mathrm{O}_{3}$, was synthesized by the reaction of 2-methanesulfonyl-4,6-dimethoxypyrimidine and N -(2-bromophenyl)-2-hydroxybenzylamine in tetrahydrofuran. There are three different planes in the molecule, each of which is conjugated. The dihedral angles between the pyrimidine plane and the planes of the two phenyl rings are 107.85 (4) and $77.38(2)^{\circ}$, and the dihedral angle between the planes of the two phenyl rings is $103.15(3)^{\circ}$.

Comment

4,6-Dimethoxypyrimidines with a phenoxy substituent at the 2-position exhibit marked herbicidal activity (Nezu et al., 1996; Tamaru et al., 1997; Hudson et al., 2002). The new title compound, (I), has shown herbicidal activity against various grass and broadleaf weeds. The present X-ray crystal structure analysis was undertaken in order to improve our understanding of the relationship between structure and activity.

(I)

The molecular structure of (I) is shown in Fig. 1 and selected bond angles are given in Table 1. The bond lengths and angles in the pyrimidine moiety are close to those found in related compounds (Hall et al., 1999; Lin et al., 2001), but the $\mathrm{N} 2-\mathrm{C} 14-\mathrm{N} 3$ angle [129.7 (3) ${ }^{\circ}$] deviates significantly from the normal value. The angles in the two phenyl rings are close

Figure 1
The molecular structure of (I), showing displacement ellipsoids at the 30% probability level and the atom-labeling scheme.

Received 31 July 2003 Accepted 19 August 2003 Online 23 August 2003
to 120° (Huo et al., 1995), except for the $\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 13$ and $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$ angles $\left[116.9\right.$ (3) and $116.2(3)^{\circ}$, respectively; Table 1].

The fact that the $\mathrm{C} 9-\mathrm{O} 1-\mathrm{C} 14$ angle is $119.7(3)^{\circ}$ shows the influence of the pyrimidine and phenyl rings on the ether group (Takashima et al., 1999). The widening of the C1-N1C7 angle [to 122.5 (3) ${ }^{\circ}$] may be due to steric interactions. The $\mathrm{N} 1-\mathrm{C} 1$ bond distance $[1.368(5) \AA$] is close to that of a $\mathrm{C}=\mathrm{N}$ double bond, probably as a result of the delocalization of π-electron density between the planes of the two phenyl rings.

There is one intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bond (Table 2). The dihedral angles between the pyrimidine plane and the planes of the two phenyl rings are 107.85 (4) and $77.38(2)^{\circ}$, and the dihedral angle between the planes of the two phenyl rings is 103.15 (3) ${ }^{\circ}$

Experimental

To a mixture of N-(2-bromophenyl)-2-hydroxybenzylamine (4.29 g , $5.5 \mathrm{mmol})$ and potassium carbonate $(12.96 \mathrm{~g}, 46.5 \mathrm{mmol})$ in tetrahydrofuran (THF; 100 ml), a solution of 2-methanesulfonyl-4,6-dimethoxypyrimidine ($7.50 \mathrm{~g}, 17.2 \mathrm{mmol}$) in THF (40 ml) was added dropwise and the mixture was stirred for 11 h under reflux. The solid was filtered off and the filtrate was left to evaporate at room temperature. After 5 d , a single crystal suitable for X-ray analysis was obtained by recrystallization from ethanol.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{BrN}_{3} \mathrm{O}_{3}$
$M_{r}=416.27$
Triclinic, $P \overline{1}$
$a=8.7821(5) \AA$
$b=10.3347(6) \AA$
$c=10.975(1) \AA$
$\alpha=104.779(5)^{\circ}$
$\beta=92.572(2)^{\circ}$
$\gamma=105.331(2)^{\circ}{ }^{\circ}$
$V=922.1(1) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.499 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 3573 \\
& \quad \text { reflections } \\
& \theta=2.1-27.4^{\circ} \\
& \mu=2.26 \mathrm{~mm}^{-1} \\
& T=296.1 \mathrm{~K} \\
& \text { Platelet, colorless } \\
& 0.36 \times 0.21 \times 0.07 \mathrm{~mm}
\end{aligned}
$$

Data collection

Rigaku R-AXIS RAPID
diffractometer

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi,1995)
$T_{\text {min }}=0.678, T_{\text {max }}=0.854$
17152 measured reflections

Refinement

Refinement on F^{2}
$R(F)=0.048$
$w R\left(F^{2}\right)=0.130$
$S=1.01$
2788 reflections
253 parameters

Table 1
Selected bond angles (${ }^{\circ}$).

C9-O1-C14	$119.7(3)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 13$	$116.9(3)$
C1-N1-C7	$122.5(3)$	$\mathrm{N} 2-\mathrm{C} 14-\mathrm{N} 3$	$129.7(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$116.2(3)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 5 \cdots \mathrm{Br} 1$	0.94	2.45	$3.065(3)$	122

H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=1.00 \AA$ and $\mathrm{N}-\mathrm{H}=0.939 \AA$) and included in the final cycles of refinement as riding atoms.

Data collection: PROCESS-AUTO (Molecular Structure Corporation/Rigaku, 2003); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Molecular Structure Corporation/ Rigaku, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: CRYSTALS (Watkin et al., 1996); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

This project was supported by the National Natural Science Foundation of China (grant No. 20272052).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hall, M. B., Niu, S. \& Reibenspies, J. H. (1999). Polyhedron, 18, 1717-1724.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Hudson, H. R., Wu, J. \& Xu, W. L. (2002). Chem. Res. Chin. Univ. 18, 481-490.
Huo, S. Q., Zhu, Y. \& Wu, Y. J. (1995). J. Organomet. Chem. 490, 243-247.
Lin, C.-J., Hwang, W.-S. \& Chiang, M.-Y. (2001). Polyhedron, 20, 3275-3280. Molecular Structure Corporation/Rigaku (2003). PROCESS-AUTO and CrystalStructure (Version 3.5.1). Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Nezu, Y., Miyazaki, M., Sugiyama, K., Wada, N., Kajiwara, I. \& Miyazawa, T. (1996). Pestic. Sci. 47, 115-124.

Sheldrick, G. M. (1997). SHELXS97. University of Göttingen, Germany.
Takashima, H., Endo, K., Ito, M., Takeuchi, H., Egawa, T. \& Konaka, S. (1999). J. Mol. Struct. 478, 13-22.

Tamaru, M., Masuyama, N., Sato, M., Takabe, F., Inoue, J. \& Hanai, R. (1997). Pestic. Sci. 49, 76-84.
Watkin, D. J., Prout, C. K., Carruthers, J. R. \& Betteridge, P. W. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, Oxford, England.

